MoSculp: Interactive Visualization of Shape and Time
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ABSTRACT

We present a system that visualizes complex human motion
via 3D motion sculptures—a representation that conveys the
3D structure swept by a human body as it moves through
space. Our system computes a motion sculpture from an input
video, and then embeds it back into the scene in a 3D-aware
fashion. The user may also explore the sculpture directly in
3D or physically print it. Our interactive interface allows users
to customize the sculpture design, for example, by selecting
materials and lighting conditions.

To provide this end-to-end workflow, we introduce an algo-
rithm that estimates a human’s 3D geometry over time from a
set of 2D images, and develop a 3D-aware image-based render-
ing approach that inserts the sculpture back into the original
video. By automating the process, our system takes motion
sculpture creation out of the realm of professional artists, and
makes it applicable to a wide range of existing video material.

By conveying 3D information to users, motion sculptures re-
veal space-time motion information that is difficult to perceive
with the naked eye, and allow viewers to interpret how dif-
ferent parts of the object interact over time. We validate the
effectiveness of motion sculptures with user studies, finding
that our visualizations are more informative about motion than
existing stroboscopic and space-time visualization methods.

CCS Concepts
* Human-centered computing — Information visualiza-
tion;

Author Keywords
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INTRODUCTION

Complicated actions, such as swinging a tennis racket or danc-
ing ballet, can be difficult to convey to a viewer through a
static photo. To address this problem, researchers and artists
have developed a number of motion visualization techniques,
such as chronophotography, stroboscopic photography, and
multi-exposure photography [37, 8]. However, since such
methods operate entirely in 2D, they are unable to convey the
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Figure 1. Our MoSculp system transforms a video (a) into a motion
sculpture, i.e., the 3D path traced by the human while moving through
space. Our motion sculptures can be virtually inserted back into the
original video (b), rendered in a synthetic scene (c), and physically 3D
printed (d). Users can interactively customize their design, e.g., by
changing the sculpture material and lighting.

motion’s underlying 3D structure. Consequently, they tend to
generate cluttered results when parts of the object are occluded
(Figure 2). Moreover, they often require special capturing pro-
cedures, environment (such as a clean, black background), or
lighting equipment.

In this paper, we present MoSculp, an end-to-end system that
takes a video as input and produces a motion sculpture: a
visualization of the spatiotemporal structure carved by a body
as it moves through space. Motion sculptures aid in visualizing
the trajectory of the human body, and reveal how its 3D shape
evolves over time. Once computed, motion sculptures can
be inserted back to the source video (Figure 1b), rendered
in a synthesized scene (Figure 1c), or physically 3D printed
(Figure 1d).
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Figure 2. Comparison of (a) our motion sculptures with (b) stroboscopic
photography and (c) shape-time photography [17] on the Ballet-1 [10]
and Federer clips.

We develop an interactive interface that allows users to: (i)
explore motion sculptures in 3D, i.e., navigate around them
and view them from alternative viewpoints, thus revealing
information about the motion that is inaccessible from the
original viewpoint, and (ii) customize various rendering set-
tings, including lighting, sculpture material, body parts to
render, scene background, and etc.!. These tools provide flex-
ibility for users to express their artistic designs, and further
facilitate their understanding of human shape and motion.

Our main contribution is devising the first end-to-end system
for creating motion sculptures from videos, thus making them
accessible for novice users. A core component of our system is
a method for estimating the human’s pose and body shape over
time. Our 3D estimation algorithm, built upon state of the art,
has been designed to recover the 3D information required for
constructing motion sculptures (e.g., by modeling clothing),
and to support simple user corrections. The motion sculpture
is then inferred from the union of the 3D shape estimations
over time. To insert the sculpture back into the original video,
we develop a 3D-aware, image-based rendering approach that
preserves depth ordering. Our system achieves high-quality,
artifact-free composites for a variety of human actions, such
as ballet dancing, fencing, and other athletic actions.

RELATED WORK

We briefly review related work in the areas of artistic rendering,
motion effects in images, human pose estimation, video editing
and summarization methods, and physical visualizations.

Automating Artistic Renderings. A range of tools have been
developed to aid users in creating artist-inspired motion vi-
sualizations [15, 14, 43, 7]. DemoDraw [14] allows users
to generate drawing animations by physically acting out an
action, motion capturing them, and then applying different
stylizing filters.

Our work continues along this line of work and is inspired
by artistic work that visualizes 3D shape and motion [16,
24,18, 19, 28]. However, these renderings are produced by
professional artists and require special recording procedures

IDemo available at http://mosculp.csail.mit.edu

or advanced computer graphics skills. In this paper, we opt to
lower the barrier to entry and make the production of motion
sculptures less costly and more accessible for novice users.

The most closely related work to ours in this category is
ChronoFab [28], a system for creating motion sculptures from
3D animations. However, a key difference is that ChronoFab
requires a full 3D model of the object and its motion as input,
which limits the practical use of ChronoFab, while our system
directly takes a video as input and estimates the 3D shape and
motion as part of the pipeline.

Motion Effects in Static Images. Illustrating motion in a
single image dates back to stroboscopic photography [37] and
classical methods that design and add motion effects to an
image (e.g., speedlines [35], motion tails [4, 47], and motion
blur). Cutting [15] presented an interesting psychological
standpoint and evaluation on the efficacy of different motion
visualizations. In the context of non-photorealistic rendering,
various motion effects have been designed for animations and
cartoons [31, 27]. Schmid et al. [43] designed programmable
motion effects as part of a rendering pipeline to produce styl-
ized blurring and stroboscopic images. Similar effects have
also been produced by Baudisch et al. [3] for creating ani-
mated icon movements. In comparison, our system does not
require a 3D model of the object, but rather estimates it from
a set of 2D images. In addition, most of these motion effects
do not explicitly model the 3D aspects of motion and shape,
which are the essence of motion sculptures.

Video Editing and Summarization. Motion sculptures
are related to video editing techniques, such as MovieRe-
shape [23], which manipulates certain properties of the human
body in a video, and summarization techniques, such as image
montage [2, 45] that re-renders video contents in a more con-
cise view, typically by stitching together foreground objects
captured at different timestamps. As in stroboscopic photog-
raphy, such methods do not preserve the actual depth order-
ing among objects, and thus cannot illustrate 3D information
about shape and motion. Another related work is [5], which
represents human actions as space-time shapes to improve
action classification and clustering. However, their space-time
shapes are 2D human silhouettes and thus do not convey 3D
information. Video Summagator [38] visualizes a video as a
space-time cube using volume rendering techniques. However,
this approach does not model self-occlusions, which leads to
clutter and visual artifacts.

Depth-based summarization methods overcome some of these
limitations using geometric information provided by depth
sensors. Shape-time photography [17], for example, conveys
occlusion relationships by showing, at each pixel, the color
of the surface that is the closest to the camera over the entire
video sequence. More recently, Klose ef al. introduced a video
processing method that uses per-pixel depth layering to create
action shot summaries [30]. While these methods are useful
for presenting 3D relationships in a small number of sparsely
sampled images, such as where the object is throughout the
video, they are not well suited for visualizing continuous mo-
tion. Moreover, these methods are based on depth maps, and
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thus provide only a “2.5D” reconstruction that cannot be easily
viewed from multiple viewpoints as in our case.

Human Pose Estimation. Motion sculpture creation involves
estimating the 3D human pose and shape over time — a fun-
damental problem that has been extensively studied. Various
methods have been proposed to estimate 3D pose from a sin-
gle image [6, 26, 40, 41, 39, 12, 48], or from a video [21, 22,
50, 36, 1]. However, these methods are not designed for the
specifics of motion visualization like our approach.

Physical Visualizations. Recent research has shown great
progress in physical visualizations and demonstrated the bene-
fit of allowing users to efficiently access information along all
dimensions [25, 29, 49]. MakerVis [46] is a tool that allows
users to quickly convert their digital information into physical
visualizations. ChronoFab [28], in contrast, addresses some
of the challenges in rendering digital data physical, e.g., con-
necting parts that would otherwise float in midair. Our motion
sculptures can be physically printed as well. However, our
focus is in rendering and seamlessly compositing them into
the source videos, rather than optimizing the procedure for
physically printing them.

SYSTEM WALKTHROUGH

To generate a motion sculpture, the user starts by loading a
video into the system, after which MoSculp detects the 2D
keypoints and overlays them on the input frames (Figure 3a).
The user then browses the detection results and confirms, on
a few (~3-4) randomly selected frames, that the keypoints
are correct by clicking the “Left/Right Correct” button. Af-
ter labeling, the user hits “Done Annotating,” which triggers
MoSculp to correct temporally inconsistent detections, with
these labeled frames serving as anchors. MoSculp then gen-
erates the motion sculpture in an offline process that includes
estimating the human’s shape and pose in all the frames and
rendering the sculpture.

After processing, the generated sculpture is loaded into
MoSculp, and the user can virtually explore it in 3D (Fig-
ure 3b). This often reveals information about shape and mo-
tion that is not available from the original camera viewpoint,
and facilities the understanding of how different body parts
interact over time.

Finally, the rendered motion sculpture is displayed in a new
window (Figure 3c), where the user can customize the design
by controlling the following rendering settings.

e Scene. The user chooses to render the sculpture in a syn-
thesized scene or embed it back into the original video by
toggling the “Artistic Background” button in Figure 3c. For
synthetic scenes (i.e., “Artistic Background” on), we use a
glossy floor and a simple wall lightly textured for realism.
To help the viewer better perceive shape, we render shadows
cast by the person and sculpture on the wall as well as their
reflections on the floor (as can be seen in Figure 1c).

e Lighting. Our set of lights includes two area lights on the
left and right sides of the scene as well as a point light on

the top. The user may choose any combination of these
lights (see the “Lighting” menu in Figure 3c).

e Body Parts. The user decides which parts of the body
form the motion sculpture. For instance, one may choose to
render only the arms to perceive clearly the arm movement,
as in Figure 2a. The body parts that we consider are listed
under the “Body Parts” menu in Figure 3c.

e Materials. Users can control the texture of the sculpture
by choosing one of the four different materials: leather,
tarp, wood, and original texture (i.e., colors taken from the
source video by simple ray casting). To better differentiate
sculptures formed by different body parts, one can specify
a different material for each body part (see the dynamically
updating “Part Material” menu in Figure 3c).

o Transparency. A slider controls transparency of the motion
sculpture, allowing the viewer to see through the sculpture
and better comprehend the complex space-time occlusion.

e Human Figures. In addition to the motion sculpture,
MoSculp can also include a number of human images (sim-
ilar to sparse stroboscopic photos), which allows the viewer
to associate sculptures with the corresponding body parts
that generated them. A density slider controls how many of
these human images, sampled uniformly, get inserted.

These tools grant users the ability to customize their visual-
ization and select the rendering settings that best convey the
space-time information captured by the motion sculpture at
hand.

Example Motion Sculptures

We tested our system on a wide range of videos of complex
actions including ballet, tennis, running, and fencing. We
collected most of the videos from the Web (YouTube, Vimeo,
and Adobe Stock), and captured two videos ourselves using a
Canon 6D (Jumping and U-Walking).

For each example, we embed the motion sculpture back into
the source video and into a synthetic background. We also
render the sculpture from novel viewpoints, which often re-
veals information imperceptible from the captured viewpoint.
In Jumping (Figure 4), for example, the novel-view rendering
(Figure 4b) shows the slide-like structure carved out by the
arms during the jump.

An even more complex action, cartwheel, is presented in Fig-
ure 5. For this example, we make use of the “Body Parts”
options in our user interface, and decide to visualize only
the legs to avoid clutter. Viewing the sculpture from a top
view (Figure 5b) reveals that the girl’s legs cross and switch
their depth ordering—a complex interaction that is hard to
comprehend even by repeatedly playing the original video.

In U-Walking (Figure 6), the motion sculpture depicts the
person’s motion in depth; this can be perceived also from
the original viewpoint (Figure 6a), thanks to the shading and
lighting effects that we select from the different rendering
options.
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Figure 3. MoSculp user interface. (a) The user can browse through the video and click on a few frames, in which the keypoints are all correct; these
labeled frames are used to fix keypoint detection errors by temporal propagation. After generating the motion sculpture, the user can (b) navigate
around it in 3D, and (c) customize the rendering by selecting which body parts form the sculpture, their materials, lighting settings, keyframe density,

sculpture transparency, specularity, and the scene background.

Figure 4. The Jumping sculpture (material: marble; rendered body
parts: all). (a) First and final video frames. (b) Novel-view rendering.
(¢, d) The motion sculpture is inserted back into the original scene and
to a synthetic scene, respectively.

In 7ennis (Figure 2 bottom), the sculpture highlights bending
of the arm during the serve, which is not easily visible from
2D or 2.5D visualizations (also shown in Figure 2 bottom).
Similarly, in Ballet-2 [10] (Figure 7), a sinusoidal 3D surface
emerges from the motion of the ballerina’s right arm, again
absent in the 2D or 2.5D visualizations.

ALGORITHM FOR GENERATING MOTION SCULPTURES
The algorithm behind MoSculp consists of several steps illus-
trated in Figure 8. In short, our algorithm (a) first detects the
human body and its 2D pose (represented by a set of keypoints)
in each frame, (b) recovers a 3D body model that represents
the person’s overall shape and its 3D poses across the frames,
in a temporally coherent manner, (c) extracts a 3D skeleton
from the 3D model and sweeps it through the 3D space to
create an initial motion sculpture, and finally, (d-f) renders the
sculpture in different styles, together with the human, while
preserving the depth ordering.

2D Keypoint Detection

The 2D body pose in each frame, represented by a set of 2D
keypoints, is estimated using OpenPose [11]. Each keypoint is
associated with a joint label (e.g., left wrist, right elbow) and
its 2D position in the frame.

Figure 5. The Cartwheel sculpture (material: wood; rendered body
parts: legs). (a) Sampled video frames. (b) Novel-view rendering. (c,
d) The motion sculpture is inserted back into the source video and to a
synthetic scene, respectively.

Figure 6. (a) The U-Walking sculpture with texture taken from the
source video. (b) The same sculpture rendered from a novel top view
in 3D, which reveals the motion in depth.

While keypoints detected in a single image are typically ac-
curate, inherent ambiguity in the motion of a human body
sometimes leads to temporal inconsistency, e.g., the left and
right shoulders flipping between adjacent frames. We address
this problem by imposing temporal coherency between de-
tections in adjacent frames. Specifically, we use a Hidden
Markov Model (HMM), where the per-frame detection results
are the observations. We compute the maximum marginal like-
lihood estimate of each joint’s location at a specific timestamp,
while imposing temporal smoothness (see the supplementary
material for more details).

We develop a simple interface (Figure 3a), where the user can
browse through the detection results (overlaid on the video
frames) and indicate whether the detected joints are all correct



Figure 7. The Ballet-2 sculpture (material: leather; rendered body parts:
body and arms). (a) First and final frames. (b) The motion sculpture
rendered in a synthetic scene.

in a given frame. The frames labeled correct are then used as
constraints in another HMM inference procedure. Three or
four labels are usually sufficient to correct all the errors in a
video of 100 frames.

From 2D Keypoints to 3D Body Over Time

Given the detected 2D keypoints, our goal now is to fit a
3D model of the body in each frame. We want temporally
consistent configurations of the 3D body model that best match
its 2D poses (given by keypoints). That is, we opt to minimize
the re-projection error, i.e., the distance between each 2D
keypoint and the 3D-to-2D projection of the mesh vertices that
correspond to the same body part.

We use the SMPL [33] body model that consists of a canonical
mesh and a set of parameters that control the body shape, pose,
and position. Specifically, the moving body is represented by
shape parameters 3, per-frame pose 67, and global translation
T'. We estimate these parameters for each of the N frames by
minimizing the following objective function:

N

Z ({Tt}’{et},ﬁ) = Z (gdata (T[,etyﬁ) +051-=gprior (et;ﬁ))

t=1

N—1
+ 0 Y Lemporal (T, T, 6",6'7 ). (1)
t=1

The data term Ly, encourages the projected 3D keypoints in
each frame to be close to the detected 2D keypoints. Zior
is a per-frame prior defined in [6], which imposes priors on
the human pose as well as joint bending, and additionally
penalizes mesh interpenetration. Finally, -Ziemporal €ncourages
the reconstruction to be smooth by penalizing change in the
human’s global translations and local vertex locations. ¢;
are hand-chosen constant weights that maintain the relative
balance between the terms. This formulation can be seen as
an extension of SMPLify [6], a single-image 3D human pose
and shape estimation algorithm, to videos. The optimization
is solved using [34]. See the supplementary material for the
exact term definitions and implementation details.

Generating the Sculpture

With a collection of 3D body shapes (Figure 9a), we create
a space-time sweep by extracting the reconstructed person’s
skeleton from the 3D model in each frame (marked red on the
shapes in Figure 9b) and connecting these skeletons across all
frames (Figure 9c¢). This space-time sweep forms our initial
motion sculpture.

REFINING AND RENDERING MOTION SCULPTURES

In order to achieve artifact-free and vivid renderings, we still
have several remaining issues to resolve. First, a generic 3D
body model (such as the one that we use) cannot accurately
capture an individual’s actual body shape In other words, it
lacks important structural details, such as fine facial structure,
hair, and clothes. Second, our reconstruction only estimates
the geometry, but not the texture. Texture mapping from 2D to
3D under occlusion itself is a challenging task, even more so
when the 3D model does not cover certain parts of the body.
Figure 11a illustrates these challenges: full 3D rendering lacks
structural details and results in noticeable artifacts.

Our approach is inserting the 3D motion sculpture back into
the original 2D video, rather than mapping the 2D contents
from the video to the 3D scene. This allows us to preserve
the richness of information readily available in the input video
(Figure 11c) without modeling fine-scale (and possibly id-
iosyncratic) aspects of the 3D shape.

Depth-Aware Composite of 3D Sculpture and 2D Video
As can be seen in Figure 11b, naively superimposing the ren-
dered 3D sculpture onto the video results in a cluttered visual-
ization that completely disregards the 3D spatial relationships
between the sculpture and the object. Here, the person’s head
is completely covered by the sculpture, making shape and mo-
tion very hard to interpret. We address this issue and produce
depth-preserving composites such as the one in Figure 11c.

To accomplish this, we estimate a depth map of the person
in each video frame. For each frame and each pixel, we then
determine if the person is closer to or farther away from the
camera than the sculpture by comparing the sculpture’s and
person’s depth values at that pixel (the sculpture depth map is
automatically given by its 3D model). We then render at each
pixel what is closer to the camera, giving us the result shown
in Figure 11c.

Refinement of Depth and Sculpture

While the estimated sculpture is automatically associated with
a depth map, this depth map rarely aligns perfectly with the
human silhouette. Furthermore, we still need to infer the
human’s depth map in each frame for depth ordering. As can
be seen in Figure 10c, the estimated 3D body model provides
only a rough and partial estimation of the human’s depth due
to misalignment and missing 3D contents (e.g., the skirt or
hair). A rendering produced with these initial depth maps
leads to visual artifacts, such as wrong depth ordering and
gaps between the sculpture and the human (Figure 10a),

To eliminate such artifacts, we extract foreground masks of the
human across all frames (using Mask R-CNN [20] followed
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Figure 8. MoSculp workflow. Given an input video, we first detect 2D keypoints for each video frame (a), and then estimate a 3D body model that
represents the person’s overall shape and its 3D poses throughout the video, in a temporally coherent manner (b). The motion sculpture is formed by
extracting 3D skeletons from the estimated, posed shapes and connecting them (c). Finally, by jointly considering depth of the sculpture (c) and the

human bodies (d), we render the sculpture in different styles, either into the original video (e) or a synthetic scene (f).

Figure 9. Sculpture formation. (a) A collection of shapes estimated from
the Olympic sequence (see Figure 1). (b) Extracted 3D surface skeletons
(marked in red). (c) An initial motion sculpture is generated by connect-
ing the surface skeletons across all frames.

by k-NN matting [13]), and refine the human’s initial depth
maps as well as the sculpture as follows.

For refining the object’s depth, we compute dense matching,
i.e., optical flow [32], between the 2D foreground mask and
the projected 3D silhouette. We then propagate the initial
depth values (provided by the estimated 3D body model) to
the foreground mask via warping with optical flow. If a pixel
has no depth after warping, we copy the depth of its nearest
neighbor pixel that has depth. This approach allows us to
approximate a complete depth map of the human. As shown in
Figure 10c, the refined depth map has values for the ballerina’s
hair and skirt, allowing them to emerge from the sculpture
(compared with the hair in Figure 10a).

For refining the sculpture, recall that a motion sculpture is
formed by a collection of surface skeletons. We use the same
flow field as above to warp the image coordinates of the surface
skeleton in each frame. Now that we have determined the
skeletons’ new 2D locations, we edit the motion sculpture in
3D accordingly?. After this step, boundary of the sculpture,
when projected to 2D, aligns well with the 2D human mask.

ZWe back-project the 2D-warped surface skeletons to 3D, assuming
the same depth as before editing. Essentially, we are modifying the
3D sculpture in only the x- and y-axes. To compensate for some
minor jittering introduced, we then smooth each dimension with a
Gaussian kernel.

Ball Bal2 Jog Olym Walk Avg

Prefer Ours to Strobo 92 75 69 69 58 73
Prefer Ours to [17] 81 78 78 83 61 76

Table 1. Percentage. We conducted human studies to compare our visu-
alization with stroboscopic and shape-time photography [17]. Majority
of the subjects suggested that ours conveys more motion information.

USER STUDIES

We conducted several user studies to compare how well motion
and shape are perceived from different visualizations, and
evaluate the stylistic settings provided by our interface.

Motion Sculpture vs. Stroboscopic vs. Shape-Time

We asked the participants to rate how well motion information
is conveyed in motion sculptures, stroboscopic photography,
and shape-time photography [17] for five clips. An example is
shown in Figure 2, and the full set of images used in our user
studies is included in the supplementary material.

In the first test, we presented the raters with two different
visualizations (ours vs. a baseline), and asked “which visual-
ization provides the clearest information about motion?”. We
collected responses from 51 participants with no conflicting
interests for each pair of comparison. 77% of the responses
preferred our method to shape-time photography, and 67%
preferred ours to stroboscopic photography.

In the second study, we compared how easily users can per-
ceive particular information about shape and motion from
different visualizations. To do so, we asked the following
clip-dependent questions: “which visualization helps more in
seeing:

e the arm moving in front the body (Ballet-1),

e the wavy and intersecting arm movement (Ballet-2),

e the wavy arm movement (Jogging and Olympics), or

o the person walking in a U-shape (U-Walking).”

We collected 36 responses for each sequence. As shown in
Table 1, on average, the users preferred our visualization over
the alternatives 75% of the time. The questions above are
intended to focus on the salient 3D characteristics of motion
in each clip, and the results support that our visualization
conveys them better than the alternatives. For example, in
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Figure 10. Flow-based refinement. (a) Motion sculpture rendering without refinement; gaps between the human and the sculpture are noticeable. (b)
Such artifacts are eliminated with our flow-based refinement scheme. (c) We first compute a dense flow field between the frame silhouette (bottom left)
and the projected 3D silhouette (bottom middle). We then use this flow field (bottom right) to warp the initial depth (top right; rendered from the 3D

model) and the 3D sculpture to align them with the image contents.

Figure 11. (a) Full 3D rendering using textured 3D human meshes ex-
poses artifacts and loses important appearance information, e.g., the
ballerina’s hair and dress. (b) Simply placing the sculpture on top of
the frame discards the information about depth ordering. (¢) Our 3D-
aware image-based rendering approach preserves the original texture
as well as appearance, and reveals accurate 3D occlusion relationship.

Ballet-1 (Figure 2 top), our motion sculpture visualizes the
out-of-plane sinusoidal curve swept out by the ballerina’s arm,
whereas both shape-time and stroboscopic photography show
only the in-plane motion. Furthermore, our motion sculpture
shows the interactions between the left and right arms.

Effects of Lighting and Floor Reflections

To avoid exposing too many options to the user, we conducted
a user study to decide (i) whether floor reflections are needed
in our synthetic-background rendering, and (ii) whether local-
ized or global lighting should be used. The raters were asked
which rendering is more visually appealing: with vs. with-
out reflections (Ours vs. A), and using localized vs. ambient
lighting (Ours vs. B).

Figure 12 shows the results collected from 20-35 responses
for each sequence on Amazon Mechanical Turk, after filtering

A Ours ‘A B

Tenn Ball Bal2 Jump Walk Olym Dunk Avg

Prefer Oursto A 93 63 86 83 83 93 73 82
Prefer OurstoB 78 94 84 78 91 78 79 84

Figure 12. We conducted human studies to justify our artistic design
choices. Top: sample stimuli used in the studies — our rendering (middle)
with two variants, without reflections (A) and without localized lighting
(B). Bottom: percentage; most of the subjects agreed with our choices.

out workers who failed our consistency check. Most of the
raters preferred our rendering with reflections plus shadows
(82%) and localized lighting (84%) to the other options. We
thus use these as the standard settings in our user interface.

TECHNICAL EVALUATION

We conducted experiments to evaluate our two key technical
components: (i) 3D body estimation over time, and (ii) flow-
based refinement of depth and sculpture.

Estimating Geometry Over Time

In our first evaluation, we compared our approach that esti-
mates the correct poses by considering change across multiple
frames against the pose estimation of SMPLify [6], in which
the 3D body model is estimated in each frame independently.
Figure 13a shows the output of SMPLify, and Figure 13b
shows our results. The errors in the per-frame estimates and
the lack of temporal consistency in Figure 13a resulted in a
jittery, disjoint sculpture. In contrast, our approach solved
for a single set of shape parameters and smoothly varying
pose parameters for the entire sequence, and hence produced
significantly better results.

To quantitatively demonstrate the effects of our approach on
the estimated poses, we applied Principal Component Anal-
ysis (PCA) to the 72D pose vectors, and visualized the pose
evolution in 2D in Figure 13. In SMPLIify (Figure 13a), there
is a significant discrepancy between poses in frames 25 and 26:
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Figure 13. Per-frame vs. joint optimization. (a) Per-frame optimization
produces drastically different poses between neighboring frames (e.g.,
from frame 25 [red] to frame 26 [purple]). The first two principal com-
ponents explain only 69 % of the pose variance. (b) On the contrary, our
joint optimization produces temporally smooth poses across the frames.
The same PCA analysis reveals that the pose change is gradual, lying on
a 2D manifold with 93% of the variance explained.

the human body abruptly swings to the right side. In contrast,
with our approach, we obtained a smooth evolution of poses
(Figure 13b).

Flow-Based Refinement

As discussed earlier, because the 3D shape and pose are en-
coded using low-dimensional basis vectors, perfect alignment
between the projected shape and the 2D image is unattain-
able. These misalignments show up as visible gaps in the final
renderings. However, our flow-based refinement scheme can
significantly reduce such artifacts (Figure 10b).

To quantify the contribution of the refinement step, we com-
puted Intersection-over-Union (IoU) between the 2D human
silhouette and projected silhouette of the estimated 3D body.
Table 2 shows the average IoU for all our sequences, before
and after flow refinement. As expected, the refinement step
significantly improves the 3D-2D alignment, increasing the
average IoU from 0.61 to 0.94. After hole filling with the
nearest neighbor, the average IoU further increases to 0.96.

IMPLEMENTATION DETAILS
We rendered our scenes using Cycles in Blender. It took a
Stratasys J750 printer around 10 hours to 3D print the sculpture

Tenn Fenc Ball Bal2 Jump Walk Olym Avg

Raw 56 87 54 .60 57 68 .65 .64
Warp 97 93 93 93 98 95 86 94
Warp+HF 98 99 96 96 .99 96 .92 .97

Table 2. IoU between human silhouettes and binarized human depth
maps before warping, after warping, and after additional hole filling
with nearest neighbor (HF). Flow-based refinement leads to better align-
ment with the original images and hence improves the final renderings.

shown in Figure 1d (~30cm long). To render realistic floor
reflections in synthetic scenes, we coarsely textured the 3D
human with simple ray casting: we cast a ray from each vertex
on the human mesh to the estimated camera, and colored that
vertex with the RGB value of the intersected pixel. Intuitively,
this approach mirrors texture of the visible parts to obtain
texture for the occluded parts. The original texture for sculp-
tures (such as the sculpture texture in Figure 6) was computed
similarly, except that when the ray intersection fell outside the
(eroded) human mask, we took the color of the intersection’s
nearest neighbor inside the mask to avoid colors being taken
from the background. As an optional post-processing step,
we smoothed the vertex colors over each vertex’s neighbors.
Other sculpture texture maps (such as wood) were downloaded
from poliigon.com.

To render a motion sculpture together with the human figures,
we first rendered the 3D sculpture’s RGB and depth images
as well as the human’s depth maps using the recovered cam-
era. We then composited together all the RGB images by
selecting, for each pixel, the value that is the closest to the
camera, as mentioned before. Due to the noisy nature of the
human’s depth maps, we used a simple Markov Random Field
(MRF) with Potts potentials to enforce smoothness during this
composition.

For comparisons with shape-time photography [17], because
it requires RGB and depth image pairs as input, we fed our
refined depth maps to the algorithm in addition to the original
video. Furthermore, shape-time photography was not orig-
inally designed to work on high-frame-rate videos; directly
applying it to such videos leads to a considerable number of
artifacts. We therefore adapted the algorithm to normal videos
by augmenting it with the texture smoothness prior in [42] and
Potts smoothness terms.

EXTENSIONS
We extend our model to handle camera motion and generate
non-human motion sculptures.

Handling Camera Motion

As an additional feature, we extend our algorithm to also han-
dle camera motion. One approach for doing so is to stabilize
the background in a pre-processing step, e.g., by registering
each frame to the panoramic background [9], and then apply-
ing our system to the stabilized video. This works well when
the background is mostly planar. Example results obtained
with this approach are shown for the Olympic and Dunking
videos, in Figure 1 and Figure 14a, respectively.


poliigon.com

Figure 15. Non-human motion sculptures. We sculpt (a) the leg motion
of a horse gait, and (b) the interaction between a basketball and the
person dribbling it.

However, for more complex scenes containing large variations
in depth, this approach may result in artifacts due to motion
parallax. Thus, for general cases, we use an off-the-shelf
Structure-from-Motion (SfM) software [44] to estimate the

camera position at each frame and then compensate for it.

More specifically, we estimate the human’s position relative
to the moving camera, and then offset that position by the
camera position given by SfM. An example of this approach
is Run, Forrest, Run!, shown in Figure 14b. As can be seen,
our method works well on this challenging video, producing
a motion sculpture spanning a long distance (Figure 14b has
been truncated due to space limit, so the actual sculpture is
even longer; see the supplementary video).

Non-Human Motion Sculptures

While we have focused on visualizing human motion, our
system can also be applied to other objects, as long as they
can be reliably represented by a parametric 3D model—an
idea that we explore with two examples. Figure 15a shows
the motion sculpture generated for a running horse, where we
visualize its two back legs. To do so, we first estimate the
horse’s poses across all frames with the per-frame method by
Zuffi et al. [51], smooth the estimated poses and translation
parameters, and finally apply our method.

Figure 16. Limitations. (a) Cluttered motion sculpture due to repeated
and spatially localized motion. (b) Inaccurate pose: there are multiple
arm poses that satisfy the same 2D projection equally well. (c) Nonethe-
less, these errors are not noticeable in the original camera view.

In Figure 15b, we visualize how a basketball interacts in space
and time with the person dribbling it. We track the ball in
2D (parameterized by its location and radius), and assign the
hand’s depth to the ball whenever they are in contact (depth
values between two contact points are linearly interpolated).
With these depth maps, camera parameters, and ball silhou-
ettes, we insert a 3D ball into the scene.

DISCUSSION & CONCLUSION

We presented MoSculp, a system that automates the creation
of motion sculptures, and allows users to interactively explore
the visualization and customize various rendering settings.
Our system makes motion sculpting accessible to novice users,
and requires only a video as input.

As for limitations, our motion sculpture may look cluttered
when the motion is repetitive and spans only a small region
(Figure 16a). In addition, we rely on high-quality pose esti-
mates, which are sometimes unattainable due to the inherent
ambiguity of the 2D-to-3D inverse problem. Figure 16b shows
such an example: when the person is captured in side profile
throughout the video (Figure 16c), there are multiple plau-
sible arm poses that satisfy the 2D projection equally well.
The red-circled region in Figure 16b shows one plausible, but
wrong arm pose. Nevertheless, when our algorithm renders
the imperfect sculpture back into the video from its original
viewpoint, these errors are no longer noticeable (Figure 16c).

We demonstrated our motion sculpting system on diverse
videos, revealing complex human motions in sports and danc-
ing. We also demonstrated through user studies that our visual-
izations facilitate users’ understanding of 3D motion. We see
two directions opened by this work. The first is in developing
artistic tools that allow users to more extensively customize
the aesthetics of their renderings, while preserving the inter-
pretability. The second is in rendering motion sculptures in
other media. In Figure 1d, we showed one example of this—a
3D printed sculpture, and future work could move towards
customizing and automating this process.
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