MoSculp: Interactive Visualization of Shape and Time

Tali

Xiuming Zhang¹

Tianfan Xue^{1,2} Dekel^{1,2}

Andrew Owens^{1,3}

Qiurui $He^{1,2}$

Jiajun Wu^1

Stefanie Mueller¹

William T. Freeman^{1,2}

¹ MIT CSAIL

² Google Research

³ UC Berkeley

- Related Work
- System Walkthrough
- User Studies
- Approach
- Results
- Conclusion

• Related Work

- System Walkthrough
- User Studies
- Approach
- Results
- Conclusion

Motivation

MAN PERFORMING STRAIGHT HIGH JUMP (.063 second)

Muybridge, The Human Figure in Motion, 1901

Motivation

Muybridge, The Human Figure in Motion, 1901

Edgerton, Back Dive, 1954

Motivation

Muybridge, The Human Figure in Motion, 1901

Edgerton, Back Dive, 1954

Duchamp, Nude Descending a Staircase, No. 2, 1912 11

Related Work

Edgerton, *Stroboscopic Photography*, 1927–1931

2D

Related Work

Edgerton, *Stroboscopic Photography*, 1927–1931

2D

Freeman & Zhang, *Shape-Time Photography*, CVPR '03

Requires a depth camera

Related Work vs. Ours

Edgerton, *Stroboscopic Photography*, 1927–1931

2D

Freeman & Zhang, *Shape-Time Photography*, CVPR '03

Requires a depth camera

MoSculp

3D w/ an RGB camera

- Related Work
- System Walkthrough
- User Studies
- Approach
- Results
- Conclusion

- Related Work
- System Walkthrough
- User Studies
- Approach
- Results
- Conclusion

User Studies: Design Choices

With Floor Reflections Preferred by 82% Without

User Studies: Efficacy in Conveying Motion

- Related Work
- System Walkthrough
- User Studies

• Approach

- Results
- Conclusion

Approach: 2D Keypoint Detection

Approach: 2D Keypoint Detection

Approach: 3D Estimation

• Solve for the best shape and poses jointly for the clip

- Solve for the best shape and poses jointly for the clip
 - Small reprojection error

- Solve for the best shape and poses jointly for the clip
 - Small reprojection error
 - Large probability of the poses

- Solve for the best shape and poses jointly for the clip
 - Small reprojection error
 - Large probability of the poses
 - Smooth evolution of poses

- Solve for the best shape and poses *jointly* for the clip
 - Small reprojection error
 - Large probability of the poses
 - Smooth evolution of poses

- Solve for the best shape and poses *jointly* for the clip
 - Small reprojection error
 - Large probability of the poses
 - Smooth evolution of poses

Input Video

Overview

Motion Sculpture Generation

Depth-Preserving Compositing

• **Key challenge**: how to "put together" 3D sculpture and 2D video?

47

• <u>Naive</u> <u>Compositing</u>: sculpture on top of the frames

• <u>Full 3D</u> <u>Rendering</u>: texturing the 3D models

Skirt Not Covered by 3D Model

48

• <u>Solution</u>: depth-preserving composite

• <u>Solution</u>: depth-preserving composite

Approach: Before Refinement

Approach: After Refinement

Outline

- Related Work
- System Walkthrough
- User Studies
- Approach
- Results
- Conclusion

Handling a Moving Camera

Dunking

Outline

- Related Work
- System Walkthrough
- User Studies
- Approach
- Results
- Conclusion

http://mosculp.csail.mit.edu Please come to our demo D-12 for more!

Thank you!

Video Courtesy of Tom Buehler (MIT CSAIL)