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HIDDEN MARKOV MODEL IN KEYPOINT DETECTION

As mentioned in the paper [3], we enforce temporal smooth-
ness in the 2D keypoint detections across all frames using a
Hidden Markov Model (HMM).

Specifically, given T video frames {x1, . . . , xT }, we com-
pute the maximum marginal likelihood estimate of joint i’s
pixel location at time t, denoted by yti , as
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where the transition probability p
(
yti
∣∣ yt−1

i

)
is a bivariate

Gaussian centered at yt−1
i with a standard deviation of three

pixels, and the emission probability p (xt | yti) is approxi-
mated as the heatmap predicted for joint i, independently at
frame t. Strictly speaking, this heatmap resembles more the
posterior p (yti | xt), i.e., how likely joint i lies at each pixel
location given frame t. Considering the simple Bayes’ rule

p
(
xt
∣∣ yti) = p (yti | xt) p (xt)

p (yti)
,

by using the heatmaps as p (xt | yti), we essentially assume a
uniform p (yti), the prior distribution on joint i’s location.
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Notice how p
(
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in Equation 1 gets expressed
in terms of p
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)
in Equation 8. This recur-

rent structure allows us to solve the HMM efficiently by mes-
sage passing. More specifically, to find the yti that maximizes
p
(
yti , x
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)
, we integrate (spatially) over frame t the

product of the Gaussian distribution for smoothness, the pre-
dicted heatmap for this joint in frame t, and where this joint
is believed to be in frame t− 1, i.e., p
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)
.

In cases where some of the person’s joints are not detected lo-
cally, we linearly interpolate their locations from neighboring
frames before running the HMM.

JOINT OPTIMIZATION OF SHAPE, POSE, AND GLOBAL
TRAJECTORY OVER TIME

Here, we provide the mathematical and implementation de-
tails of our formulation.
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As mentioned in the paper, this formulation can be seen as an
extension of SMPLify [1], a single-image 3D human pose
and shape estimation algorithm, to videos. Therefore, we
will elaborate only on the newly added term—the temporal
smoothness prior Ltemporal.

This term encourages the 3D model to be temporally smooth;
it penalizes changes in the human’s global translations (Equa-
tion 11), local vertex locations (Equation 12), and pose pa-
rameters (Equation 13). More specifically,

Ltemporal = λ1Lglobal + λ2Llocal + λ3Lrotation (10)
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where V (·) are the vertices’ local 3D coordinates given the
pose and shape, and the λ’s are constant weights that roughly
match the orders of magnitude of the three losses.

Intuitively, Lglobal requires the body’s global trajectory to be
smooth; Llocal further requires vertices of the human mesh to
translate smoothly; and Lrotation imposes additional rotational



smoothness in the parameter space, which is necessary for
producing natural pose evolution.

Optimization
We adopt a two-stage optimization procedure, in which we
first ignore the temporal loss, optimizing only the per-frame
loss: Ldata+α1Lspatial. This runs in a fully parallelized fashion
and provides good initializations to, thereby speeding up, the
subsequent joint optimization.

More importantly, this two-step procedure allows us to ad-
dress effectively the “pose-flipping problem”: tendency of the
joint optimization getting stuck with flipped facing directions
when the person is captured in a side view throughout, often
due to the inherent ambiguity (see Run, Forrest, Run! for an
example). To avoid such local minima, the algorithm tries
both directions that the human model could face, when the
left-right shoulder or hip joints are less than 100 pixels apart
(a heuristic), and then initializes the joint optimization with
the pose that gives a lower Lprior. We minimize this loss us-
ing a non-linear least squares approach [2].
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